Bayesian non-parametric inference for $\Lambda$-coalescents: Posterior consistency and a parametric method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian non-parametric inference for $\Lambda$-coalescents: consistency and a parametric method

We investigate Bayesian non-parametric inference for the Λ-measure of Λ-coalescent processes parametrised by probability measures on the unit interval and provide an implementable, provably consistent MCMC inference algorithm. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all obs...

متن کامل

Bayesian non-parametric inference for -coalescents: posterior consistency and a parametric method

We investigate Bayesian non-parametric inference of the Λ-measure of Λ-coalescent processes with recurrent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is inconsistent when all observations are contemporaneous. We then show that th...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Posterior Consistency for some Semi-parametric Problems

The Bayesian approach to analyzing semi-parametric models are gaining popularity in practice. For the Cox proportional hazard model, it has been shown recently that the posterior is consistent and leads to asymptotically accurate confidence intervals under a Lévy process prior on the cumulative hazard rate. The explicit expression of the posterior distribution together with independent incremen...

متن کامل

Bayesian inference for longitudinal data with non-parametric treatment effects.

We consider inference for longitudinal data based on mixed-effects models with a non-parametric Bayesian prior on the treatment effect. The proposed non-parametric Bayesian prior is a random partition model with a regression on patient-specific covariates. The main feature and motivation for the proposed model is the use of covariates with a mix of different data formats and possibly high-order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2018

ISSN: 1350-7265

DOI: 10.3150/16-bej923